If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+60t+4=0
a = 16; b = 60; c = +4;
Δ = b2-4ac
Δ = 602-4·16·4
Δ = 3344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3344}=\sqrt{16*209}=\sqrt{16}*\sqrt{209}=4\sqrt{209}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{209}}{2*16}=\frac{-60-4\sqrt{209}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{209}}{2*16}=\frac{-60+4\sqrt{209}}{32} $
| 3−2w=8 | | 12+8y=-10 | | 7x-4=x+6 | | 10y+3=+17 | | 5u+12=-3 | | 4x÷75=4x | | 4h÷75=4h | | 0.5=30t-5t^2 | | 3(x-6)=5x=6 | | 4×h×h×h÷75=4×h | | 10x+4-3x=20 | | 10x+4-3x=30 | | 0,8-0,2=-0,2x | | 2/5(j-3)=1/5(j-2) | | 3(x-1)=6x+5 | | 0,3+2x=1,8 | | 2/3(2k-5)=1/2(2k-5) | | -4.9x^2+15x+20=0 | | -4.9x+15x+20=0 | | 12-x=4x+2 | | 7z+12=10-5 | | 2(h+8)=h-12 | | 3(g+2)=g-5 | | 9^x+1+3^2x+1=729 | | 5(p+13)=2p-4 | | 2/3x+11=1/4x-9 | | -10q=30 | | z-76=-65 | | -7w=-56 | | (9^x+1)+(3^2x+1)=729 | | q+1=12 | | s/2=-1 |